Mock First Examination 28 February, 2000

Part I. (Closed Book)

1. (25 points)
 a. What is Fourier's Law?
 b. What is a heat transfer coefficient?
 c. What is the Biot number?
 d. Why can we describe a conduction process by an equivalent electrical circuit?
 e. What is Separation of Variables and where can the technique be used?

2. (25 points)
 The clay-firing kiln oven in a 250-year-old colonial farm is lined with three layers of brick. The inside wall is made of silica brick (4 in. thick); covered with masonry brick (8 in. thick) while the outside layer is common brick (6 in. thick). During operation, the inside wall reaches 1000 °F and the outside surface is 130 °F.

<table>
<thead>
<tr>
<th>Brick Type</th>
<th>k (W/m°C)</th>
<th>c_p (kJ/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica brick</td>
<td>2.47</td>
<td>0.84</td>
</tr>
<tr>
<td>Masonry brick</td>
<td>1.04</td>
<td>0.69</td>
</tr>
<tr>
<td>Common brick</td>
<td>0.69</td>
<td>0.84</td>
</tr>
</tbody>
</table>

 a) Calculate the heat loss through the wall in BTU/ft²-hr
 b) Determine the temperatures at the interfaces between the brick layers.
Chemical Engineering 333
Heat Transfer

Mock First Examination 28 February, 2000

Part II. (Open Book)

3. (25 points)
You have been asked to specify the material for a finned surface to cool a computer chip. The heat production of the chip during operation is 1 watt. The surface area of the chip is 15 cm\(^2\). The fins are 3 cm long, 1.5 cm high, and 1 mm thick. There are 10 such fins on the chip. The convective heat transfer coefficient for heat transfer from the fin to the air has been determined to be 15 watts/m\(^2\) °C. The air temperature is 25°C.

a) What is the temperature of the chip if the fins are 100% efficient?
b) What should the minimum thermal conductivity of the fin material be to ensure that the chip surface temperature is less than 35°C?

Reference - Incropera and Dewitt section 3.6

4. (25 points)
Electrical heater wires are installed in a solid wall having thickness of 10 cm and \(k = 2.75 \text{ W/m·°C}\). The right face is exposed to an environment with \(h = 50 \text{ W/m·°C}\) and \(T_\infty = 30\text{°C}\), while the left face is exposed to an environment with \(h = 75 \text{ W/m·°C}\) and \(T_\infty = 50\text{°C}\). What is the maximum allowable heat generation rate such that the temperature does not exceed 300°C?