Sequential and Parallel Algorithms

Homework 2

Due within 10 days of watching Lecture 8.

Exercises 12.2-6. Show that if |U| > nm, there is a subset of U of size n consisting of keys that all hash to the same slot, so that the worst-case searching time for hashing with chaining is \(\Theta(n) \).

Exercise 12.3-5. Show that if we restrict each component \(a_i \) of \(a \) in the equation

\[
\begin{align*}
 h_a(x) &= \sum_{i=0}^{r} a_i x_i \mod m
\end{align*}
\]

to be nonzero, then the set \(\mathcal{H} = \{h_a\} \) as defined in the equation

\[
\begin{align*}
 \mathcal{H} &= \bigcup_a [h_a]
\end{align*}
\]

is not universal. \((\text{Hint: Consider the keys } x = 0 \text{ and } y = 1)\).

Problem 12.3. Suppose that we have a hash table with \(n \) slots, with collisions resolved by chaining, and suppose that \(n \) keys are inserted into the table. Each key is equally likely to be hashed to each slot. Let \(M \) be the maximum number of keys in any slot after all the keys have been inserted. Prove an \(O(\lg n/\lg \lg n) \) upper bound on \(E[M] \), the expected value of \(M \).

- (a) Argue that the probability \(Q_k \) that \(k \) keys hash to a particular slot is given by

\[
 Q_k = \binom{n}{k} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k}
\]

- (b) Let \(P_k \) be the probability that \(M = k \), i.e., the probability that the slot containing the most keys contains \(k \) keys. Show that \(P_k \leq nQ_k \).

- (c) Use Stirling’s approximation to show that \(Q_k < e^k/k! \).

Exercise 13.3-3. We can sort a given set of \(n \) numbers by first building a binary search tree containing these numbers (using TREE-INSERT repeatedly to insert the numbers
one by one) and then printing the numbers by an inorder tree walk. What are the
worst-case and the best-case running times for this sorting algorithm?

Exercise 13.3-4. Show that if a node in a binary search tree has two children, then its
successor has no left child and its predecessor has no right child.

Exercise 14.2-4. Let \(a, b, c \) be arbitrary nodes in subtrees \(\alpha, \beta, \gamma \), respectively, in the
tree shown below. How do the depths of \(a, b, c \) change when a left rotation is performed
on node \(x \)?