— Our assumption: Newtonian universe with an *absolute time*.

— There is a fictitious perfect clock that keeps *absolute* or *real* time.

> "Absolute, true and mathematical time, of itself, and from its own nature, flows equably, without relation to anything external" — I. Newton, *Philosophiae Naturalis Principia Mathematica*, 1687.

— This Newtonian assumption is false but a useful practical basis for our arguments.

— A clock is a mapping,

\[
C_i : \text{real time} \rightarrow \text{clock time}.
\]

— We can also go in the other direction:

\[
c_i : \text{clock time} \rightarrow \text{real time}.
\]

— Our convention: use lower-case for real time and upper case for clock time.
Real clocks drift.

\[\rho = \max_{t, \Delta} \left| \frac{C_i(t + \Delta) - C_i(t)}{\Delta} - 1 \right|. \]
Clock Synchronization

Two clocks i, j are said to be synchronized at clock time T if, for some specified $\delta > 0$,

$$|c_i(T) - c_j(T)| < \delta$$

An alternative (and almost equivalent) definition is to say that they are synchronized at real time t if, for some specified $\delta > 0$, we have

$$|C_i(t) - C_j(t)| < \delta.$$
Clock Synchronization

Mutual Synchronization:

— Each clock periodically checks its own time with respect to that of the other clocks.
— It adjusts itself (slows down or speeds up) in reaction to this information.
— In the absence of faults, clock synchronization is trivial.
— If clocks suffer Byzantine failure, multiple cliques can form, which then may drift out of sync with one another.
— We will consider algorithms for fault-tolerance clock synchronization implemented in
 * Hardware.
 * Software.
Hardware Synchronization

Basic component is a phase-locked loop.

![Comparator Diagram](image)

V.C.O. = Voltage-Controlled Oscillator

The output voltage of the comparator at any time t is proportional to the difference between the phase of the signal input, $\phi_i(t)$, and that of the VCO, $\phi_r(t)$:

$$v_c(t) = K_c\{\phi_i(t) - \phi_r(t)\},$$

where K_c is called the comparator gain factor.

Assumptions:

— Signal propagation time is negligible.

— The interconnection network is fully connected.
Question: How to pick the reference signal?

* Possibility 1: Pick the fastest signal.
* Possibility 2: Pick the median signal.
* Possibility 3: Pick signal number k for some suitable fixed k.

None of these approaches will be guaranteed to work!
— *Condition C1*: If all clocks in G_1 (G_2) use as reference a signal that is faster\(^1\) (slower) than any clock in G_2 (G_1), then there must be at least one clock in G_2 (G_1) which uses as reference either the slowest (fastest) clock in G_1 (G_2) or a signal faster (slower) than the slowest (fastest) clock in G_1 (G_2). This condition ensures that multiple non-overlapping cliques do not form.

— *Condition C2*: If a good clock x uses as reference the signal of a faulty clock y, there must exist nonfaulty clocks z_1 and z_2 such that z_1 is faster than, or equal to, y, and y is faster than, or equal to, z_2. Either z_1 or z_2 may be x itself.

\(^1\)We say that signal a is faster than signal b if a occurs earlier than b.

Approach: Pick a reference based on the perceived position of each clock in the tick-sequence. A faster clock will tend to pick a slower clock as a reference.

— **C2:** Condition C2 will be satisfied if we avoid picking either the fastest m or the slowest m clocks in the system.

— **C1:** Satisfying C1 is a bit harder: it can be shown that if we break the good clocks into any two nonempty groups G_1, G_2 such that every clock in G_1 is faster than any clock in G_2, we must have

$$\max_{i \in G_1} f_{p(i)}(N, m) - \min_{i \in G_2} f_{p(i)}(N, m) \geq m.$$
Case 1. $\max_{x \in G_1} f_{p(x)}(N, m) \leq \|G_1\| + m$: If all the faulty clocks appear to the clocks in G_1 to be faster than any G_2 clock, there will be no reference to any clock outside G_1. Hence, at least one clock in G_2 must be assured of a reference to a clock in G_1. This implies that

$$\min_{y \in G_2} f_{p(y)}(N, m) \leq \|G_1\|$$

Case 2. $\min_{y \in G_2} f_{p(y)}(N, m) \geq \|G_1\| + 1$: By reasoning similar to that in Case 1, this requires that there be at least one clock in G_1 whose reference is drawn from G_2. But, to be sure of that, we require

$$\max_{x \in G_1} f_{p(x)}(N, m) \geq \|G_1\| + m + 1$$

Case 3. $\max_{x \in G_1} f_{p(x)}(N, m) > \|G_1\| + m$ or $\min_{y \in G_2} f_{p(y)}(N, m) < \|G_1\| + 1$: In such a case, no potential exists for the formation of nonoverlapping cliques.
— If \(\max_{x \in G_1} f_p(x)(N, m) \leq \|G_1\| + m \), then \(\min_{y \in G_2} f_p(y)(N, m) \leq \|G_1\| \).

— Else if \(\min_{y \in G_2} f_p(y)(N, m) \geq \|G_1\| + 1 \), then \(\max_{x \in G_1} f_p(x)(N, m) \geq \|G_1\| + m + 1 \).

It follows from these requirements that
\[
\max_{x \in G_1} f_p(x)(N, m) - \min_{y \in G_2} f_p(y)(N, m) \geq m
\]

But we require that any reference be neither the first \(m \) nor the last \(m \) clocks, i.e., that any reference lie in the interval of positions \(m + 1, \ldots, N - m \). So, we must have:

\[
(N - m) - (m + 1) \geq m \Rightarrow N \geq 3m + 1
\]
To ensure that C1 and C2 are satisfied for *every* partition $G1, G2$, it is sufficient to use the following functions f_i:

$$f_i(N, m) = \begin{cases}
2m & \text{if } i < N - m \\
 m + 1 & \text{otherwise}
\end{cases}$$