Real-Time Systems Lecture 15
These were some of the more important things written out during the class. Please note that these notes are not meant to be comprehensive: they are simply what was written down during the lecture.
\[t_e \text{ - exec. time w/o checkpoints} \]
\[t_c \text{ - checkpointing cost} \]
\[T = t_e + n_c t_c \]
\[t_{slack} = t_{\text{deadline}} - T. \]

\[
\text{Cond:} \quad \text{Prob}[\text{deadline is not missed}] \\
\downarrow \\
\sum_{n=0}^{\infty} P\left[\text{not missed} \left| n \text{ transients affect the execution} \right. \right] \\
\quad \times P\left[n \text{ transients affect the execution} \right]
\]
Suppose only transients happen
- Poisson process with rate λ
- Recovery time = t_{rec}
- Assume that while a processor is undergoing one transient, it is immune to further transients.

The prob. that a segment is not hit

$$p'' = e^{-\lambda t_{seg}}$$

$$t_{seg} = \frac{te}{n} + t_c$$

The prob. of being hit by just one fault during the entire execution

$$= \binom{n_c}{1} (p'')^{n_c-1}$$
\[P \left[n \text{ transients affect the execution} \right] \]

\[e^{-\lambda(t_e + n t_c)} \]

\(n = 0 \):

\[e \]

\(n = 1 \):

\underline{Approach:} Approximate it:

\underline{Lower Bound:} \(\lambda t_e e^{-\lambda t_e} \)

where \(t_e = t_e + n_c t_c \)

\underline{Upper Bound:} \(\lambda t_u e^{-\lambda t_u} \)

where \(t_u = t_e + n_c t_c + \frac{t_e}{n} + t_c \)

Suppose \(p' \) is the probability that an individual segment is hit by a single event.
Note: After the lecture, someone pointed out to me that $P[n\text{ transient}]$ is not always maximized when one maximizes the interval: that is because $\lambda t e^{-\lambda t}$ looks like this:

However, that does not affect our bound calculation because:

1. Over the interest parameter ranges of interest, $\lambda t u$ is small enough that $\lambda t e^{-\lambda t u}$ is an increasing function, and

2. Even if 1 were untrue, then we would still get an upper bound to the failure probability because $P[n=0]$ goes down monotonically as t goes up.