ECE 603 - Probability and Random Processes, Fall 2016

Homework #1

Due: 09/23/16, in class

- 1. [Pishro-Nik, Chapter 1, Problem 10] Consider the set of natural numbers $\mathcal{N} = \{0, 1, 2, ..., \}$. Let \mathcal{Y} be the set of all subsets of \mathcal{N} . Is \mathcal{Y} countable or uncountable? (Note: If you look at the problem description in the Pishro-Nik book, there are hints that will help you.)
- Determine whether the following sets are finite, countably infinite, or uncountable (*Hint: Think of a function as a table showing the output for every possible input. For example, a function f* : {0,1} → Z₊ can be specified by a two-element table containing the values for f(0) ∈ Z₊ and f(1) ∈ Z₊. A sample function/table might be f(0) = 32, f(1) = 221. Then, think how many distinct tables there could be.):
 - (a) The set A of all functions $f: \{0, 1\} \longrightarrow \mathcal{Z}_+$
 - (b) The set B_n of all functions $f : \{1, 2, \dots, n\} \longrightarrow \mathcal{Z}_+$
 - (c) The set $C = \bigcup_{n \in \mathcal{Z}_+} B_n$.
 - (d) The set D of all functions $f: \mathbb{Z}_+ \longrightarrow \{0, 1\}$.
 - (e) The set E of all functions $f: \mathcal{Z}_+ \longrightarrow \mathcal{Z}_+$.

(f) The set F of all functions $f : \mathbb{Z}_+ \longrightarrow \{0, 1\}$ such that f(n) = 0 for $n \ge N$, where N is some integer.

(g) The set G of all functions $f : \mathbb{Z}_+ \longrightarrow \mathbb{Z}_+$ such that f(n) = 1 for $n \ge N$, where N is some integer.

- (h) The set H of all functions $f : \mathbb{Z}_+ \longrightarrow \mathbb{R}$ such that f(n) = 1 for $n \ge N$, where N is some integer.
- (i) The set I of all two-element subsets of \mathcal{Z}_+ .
- (j) The set J of all finite subsets of \mathcal{Z}_+ .
- 3. A number is chosen at random from the interval [0,1]. As is the standard case, the probabilities are defined on the Borel σ -algebra (restricted to [0,1]). **Starting from first principles** (i.e. definition of the Borel σ -algebra, axioms of probability, etc.), answer the following three parts:

(a) Let A be a subset of [0,1] that is **not** in the Borel σ -algebra. Show that A must contain an uncountable number of elements.

(b) Let D be an arbitrary uncountable subset of [0, 1]. Is \overline{D} , the complement of D, necessarily countable?

(c) Let C be the set of irrational numbers in [0, 1]; that is, $x \in C$ if and only if $0 \le x \le 1$ and $x \ne \frac{m}{n}$ for all $m \in \{0, 1, 2, 3, ...\}$, $n \in \{0, 1, 2, 3, ...\}$. Find the probability of C.

4. Suppose that I conduct the following experiment. I flip a coin continually, and I write down the result of the flips to get an outcome ω . For example, a possible ω might look like:

 $\omega = (\text{Tail}, \text{Tail}, \text{Tail}, \text{Head}, \text{Head}, \dots)$

(a) Consider the sample space S of all possible outcomes ω . Is S countable or uncountable?

(b) Construct a rich (i.e. non-trivial) probability space (S, \mathcal{A}, P) for this experiment. You should end up with an \mathcal{A} with an uncountable number of elements that should allow one to answer any question of interest.

(c) Show that the following events are in your probability space, and, **using your probability space**, find their probability:

- The event that I get the outcome that alternates Tails and Heads forever: $\omega = (\text{Tail, Head, Tail, Head, etc.})$.
- The event that the first three flips are Tail.
- The event that flips four through six are Tail.
- 5. I have analyzed two *independent* experiments, Experiment 1 and Experiment 2, to arrive at two separate probability spaces: $(\Omega_1, \mathcal{A}_1, P_1)$ and $(\Omega_2, \mathcal{A}_2, P_2)$, where:

 $\Omega_1 = \{1,2\}, A_1 = \{\phi,\{1\},\{2\},\{1,2\}\}, \text{ and } P_1(\cdot) \text{ is defined by } P_1(\phi) = 0, P_1(\{1\}) = 0.4, P_1(\{2\}) = 0.6, P_1(\Omega) = 1.$

 $\Omega_2 = \{2,4\}, A_2 = \{\phi, \{2\}, \{4\}, \{2,4\}\}, \text{ and } P_2(\cdot) \text{ is defined by } P_2(\phi) = 0, P_2(\{2\}) = 0.2, P_2(\{4\}) = 0.8, P_2(\Omega) = 1.$

(a) Are these valid probability spaces? Be sure to tell me all of the conditions that you checked to arrive at your answer.

(b) My boss asks me to define a combined experiment as follows: Perform Experiment 1 and remember the result; then, perform Experiment 2 and remember the result. Now, write in your notebook the *outcome* of the combined experiment as an ordered pair with the first entry equal to the result of Experiment 1 and and the second entry equal to the result of Experiment 2. For example, an outcome might be "(1,4)". Find (Ω, \mathcal{A}, P) for the combined experiment. Use a \mathcal{A} that captures as many events as possible, and be sure to write out explicitly at least half of the events in \mathcal{A} .

(c) Alas, the boss is fickle and changes his mind. Now he asks: perform Experiment 1 and remember the result; then, perform Experiment 2 and remember the result. Now, write in your notebook the *outcome* of the combined experiment as a *random variable* X equal to the result of Experiment 1 times the result of Experiment 2. For example, an outcome might be "4" (which is 2×2). Find (Ω, \mathcal{A}, P) for the random variable X. *Hint: Feel free to define* P using the integral of a function if this makes it easier to represent.

Now, your buddy in the modeling department comes to you with yet another experiment description: $(\Omega_3, \mathcal{A}_3, P_3)$, where

 $\Omega_3 = \{1, 2, 3\}, A_3 = \{\phi, \{1\}, \{2, 3\}, \{1, 2, 3\}\}, \text{ and } P_3(\cdot) \text{ is defined by } P(\phi) = 0, P(\{1\}) = 0.1, P(\{2, 3\}) = 0.9, P(\{1, 2, 3\}) = 1.$

(d) Is $(\Omega_3, \mathcal{A}_3, P_3)$ a valid probability space? Be sure to tell me all of the conditions that you checked to arrive at your answer.

(e) Your boss asks you to use the description of $(\Omega_3, \mathcal{A}_3, P_3)$ to find the probability that a "3" is observed. How do you respond?