1 Counting Methods

- Counting methods can be used for discrete sample spaces with equally likely outcomes.

- For such a finite sample space S, the probability of an event A is

$$P(A) = \frac{|A|}{|S|}$$

1.1 Multiplication Principle

- The principle is given as

Suppose that we perform r experiments such that the kth experiment has n_k possible outcomes, for $k = 1, 2, \cdots, r$. Then there are a total of $n_1 \times n_2 \times n_3 \times \cdots \times n_r$ possible outcomes for the sequence of r experiments.

- Sampling: Choosing an element from a set. We draw a sample at random from a given set in which each element of set has equal chance of being chosen.

1. **With replacement**: While drawing multiple samples from a set, if we put each element back after each draw, we call it sampling with replacement. It also means *repetition allowed*.

2. **Without replacement**: While drawing multiple samples, we do not put each element back after every draw, i.e *repetitions not allowed*.

3. **Ordered**: Sampling in which ordering matters.

4. **Unordered**: Sampling in which ordering does not matter.

2 Ordered Sampling with Replacement

- We need to make k draws from a set of n-elements in which ordering matters and there is repetition.

- Thus the total number of ways of choosing k objects from a set with n elements when ordering matters and repetition is allowed

$$n \times n \times \ldots \times n = n^k.$$
2.1 Ordered Sampling without Replacement: Permutations

- When ordering matters and repetitions are not allowed, the total number of ways of choosing \(k \) objects from a set with \(n \) elements is given as

\[
n \times (n - 1) \times \ldots \times (n - k + 1).
\]

- This is referred to as \(k \)-permutations of an \(n \)-element set:

\[
P_n^k = n \times (n - 1) \times \ldots \times (n - k + 1).
\]

- Note that for \(k > n \), we have \(P_n^k = 0 \) and if \(k = n \),

\[
P_n^n = n \times (n - 1) \times \ldots \times 1.
\]

- \(P_n^n \) is equal to \(n! \) and is pronounced as \(n \) factorial.

- In general

\[
The number of \(k \)-permutations of \(n \) distinguishable objects is given by
\]

\[
P_k^n = \frac{n!}{(n-k)!}, \text{ for } 0 \leq k \leq n.
\]

- Common notations for \(k \)-permutations of an \(n \)-element set include \(P_{n,k} \), \(nP_k \), etc.
3 Problem

1. If \(k \) people are at a party, what is the probability that at least two of them have the same birthday? Suppose that there are \(n = 365 \) days in a year and all days are equally likely to be the birthday of a specific person.

 Hint: Let \(A \) be the event that at least two people have the same birthday. First note that if \(k > n \), then \(P(A) = 1; \) so, let’s focus on the more interesting case where \(k \leq n \). The phrase “at least” suggests that it might be easier to find the probability of the complement event, \(P(A^c) \). This is the event that no two people have the same birthday ...

 Solution: Let \(A \) be the event that at least two people have the same birthday. First note that if \(k > n \), then \(P(A) = 1; \) so, let’s focus on the more interesting case where \(k \leq n \). The phrase “at least” suggests that it might be easier to find the probability of the complement event, \(P(A^c) \). This is the event that no two people have the same birthday, and we have

\[
P(A) = 1 - \frac{|A^c|}{|S|}.
\]

Thus, to solve the problem it suffices to find \(|A^c| \) and \(|S| \). Let’s first find \(|S| \). What is the total number of possible sequences of birthdays of \(k \) people? Well, there are \(n = 365 \) choices for the first person, \(n = 365 \) choices for the second person, ..., \(n = 365 \) choices for the \(k \)th person. Thus there are

\[
n^k
\]

possibilities. This is, in fact, an ordered sampling with replacement problem, and as we have discussed, the answer should be \(n^k \) (here we draw \(k \) samples, birthdays, from the set \(\{1, 2, ..., n = 365\} \)). Now let’s find \(|A^c| \). If no birthdays are the same, this is similar to finding \(|S| \) with the difference that repetition is not allowed, so we have

\[
|A^c| = P^n_k = n \times (n - 1) \times ... \times (n - k + 1).
\]

You can see this directly by noting that there are \(n = 365 \) choices for the first person, \(n - 1 = 364 \) choices for the second person, ..., \(n - k + 1 \) choices for the \(k \)th person. Thus the probability of \(A \) can be found as

\[
P(A) = 1 - \frac{|A^c|}{|S|}
= 1 - \frac{P^n_k}{n^k}.
\]
4 Unordered Sampling without Replacement: Combinations

- We want to make \(k \) draws from a set of \(n \)-elements in which ordering does not matter and repetition is not allowed.
- This means that we have to chose a \(k \)-element subset of \(A \), and is also called \(k \)-combination of the set \(A \).
- The number of \(k \)-element subsets of \(A \) is given by \(\binom{n}{k} \) and is read as \(n \) choose \(k \).
- The difference between \(\binom{n}{k} \) and \(P_k^n \) is in the ordering.
- For any \(k \)-element subset of \(A \), we can order the elements in \(k! \) ways. Thus
 \[
 P_k^n = \binom{n}{k} \times k!
 \]
 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}
 \]
- If \(k > n \), then \(\binom{n}{k} = 0 \).
- In general

 The number of \(k \)-combinations of an \(n \)-element set is given by
 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}, \text{ for } 0 \leq k \leq n.
 \]
- \(\binom{n}{k} \) is also called the binomial coefficient; as the coefficients in the binomial theorem are given by \(\binom{n}{k} \).
- The binomial theorem states that for an integer \(n \geq 0 \), we have
 \[
 (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}.
 \]
- \(n \) choose \(k \) is also denoted as \(C_{n,k}, C(n,k), nCk \), etc.

4.1 Interpretation of \(\binom{n}{k} \)

We can interpret \(\binom{n}{k} \) as

The total number of ways to divide \(n \) distinct objects into two groups \(A \) and \(B \) such that group \(A \) consists of \(k \) objects and group \(B \) consists of \(n - k \) objects is \(\binom{n}{k} \).
5 Problem

2. I have 10 Algebra books and 20 probability books. I choose 5 books at random. What is the probability that I choose more than 2 probability books?

Solution:

\[P(A) = \frac{|A|}{|S|} = \frac{\binom{10}{2}\binom{20}{3} + \binom{10}{1}\binom{20}{4} + \binom{10}{0}\binom{20}{5}}{\binom{30}{5}}. \] (1)