1 Counting Methods

- Counting methods can be used for discrete sample spaces with equally likely outcomes.

- For such a finite sample space S, the probability of an event A is

$$P(A) = \frac{|A|}{|S|}$$

1.1 Multiplication Principle

- The principle is given as

Suppose that we perform r experiments such that the kth experiment has n_k possible outcomes, for $k = 1, 2, \cdots, r$. Then there are a total of $n_1 \times n_2 \times n_3 \times \cdots \times n_r$ possible outcomes for the sequence of r experiments.

- Sampling - Choosing an element from a set. We draw a sample at random from a given set in which each element of set has equal chance of being chosen.

1. With replacement - While drawing multiple samples from a set, if we put each element back after each draw, we call it sampling with replacement. It also means repetition allowed.

2. Without replacement - While drawing multiple samples, we do not put each element back after every draw, i.e repetitions not allowed.

3. Ordered - Sampling in which ordering matters.

4. Unordered - Sampling in which ordering does not matter.

2 Ordered Sampling with Replacement

- We need to make k draws from a set of n-elements in which ordering matters and there is repetition.

- Thus the total number of ways of choosing k objects from a set with n elements when ordering matters and repetition is allowed

$$n \times n \times \cdots \times n = n^k.$$
2.1 Ordered Sampling without Replacement: Permutations

- When ordering matters and repetitions are not allowed, the total number of ways of choosing k objects from a set with n elements is given as

\[n \times (n - 1) \times \ldots \times (n - k + 1). \]

- This is referred to as \(k \)-permutations of an n-element set:

\[P_n^k = n \times (n - 1) \times \ldots \times (n - k + 1). \]

- Note that for \(k > n \), we have \(P_n^k = 0 \) and if \(k = n \),

\[P_n^n = n \times (n - 1) \times \ldots \times 1. \]

- \(P_n^n \) is equal to \(n! \) and is pronounced as \(n \) factorial.

- In general

\[P_k^n = \frac{n!}{(n-k)!}, \text{ for } 0 \leq k \leq n. \]

- Common notations for \(k \)-permutations of an n-element set include \(P_{n,k}, nPk \), etc.
3 Problem

1. If k people are at a party, what is the probability that at least two of them have the same birthday? Suppose that there are $n = 365$ days in a year and all days are equally likely to be the birthday of a specific person.

*Hint: Let A be the event that at least two people have the same birthday. First note that if $k > n$, then $P(A) = 1$; so, let’s focus on the more interesting case where $k \leq n$. The phrase “at least” suggests that it might be easier to find the probability of the complement event, $P(A^c)$. This is the event that no two people have the same birthday ...
4 Unordered Sampling without Replacement: Combinations

- We want to make k draws from a set of n-elements in which ordering does not matter and repetition is not allowed.
- This means that we have to chose a k-element subset of A, and is also called k-combination of the set A.
- The number of k-element subsets of A is given by $\binom{n}{k}$ and is read as n choose k.
- The difference between $\binom{n}{k}$ and P^n_k is in the ordering.
- For any k-element subset of A, we can order the elements in $k!$ ways. Thus
 \[P^n_k = \binom{n}{k} \times k! \]
 \[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]
- If $k > n$, then $\binom{n}{k} = 0$.
- In general
 \[\binom{n}{k} = \frac{n!}{k!(n-k)!}, \text{ for } 0 \leq k \leq n. \]
- $\binom{n}{k}$ is also called the binomial coefficient; as the coefficients in the binomial theorem are given by $\binom{n}{k}$.
- The binomial theorem states that for an integer $n \geq 0$, we have
 \[(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}. \]
- n choose k is also denoted as $C_{n,k}$, $C(n,k)$, nCk, etc.

4.1 Interpretation of $\binom{n}{k}$

We can interpret $\binom{n}{k}$ as

The total number of ways to divide n distinct objects into two groups A and B such that group A consists of k objects and group B consists of $n - k$ objects is $\binom{n}{k}$.
5 Problem

2. I have 10 Algebra books and 20 probability books. I choose 5 books at random. What is the probability that I choose more than 2 probability books?