In-Network Services for Customization in
Next-Generation Networks

Tilman Wolf, University of Massachusetts Amherst

Abstract

The design of the current Internet lacks in adaptability to accommodate novel net-
work uses and functional requirements. It is therefore important to explore how
new services can be introduced info the network infrastructure. We present a novel
network architecture that can accommodate the deployment and custom instantia-
tion of such network services. We discuss the motivation for our design and several
of the research challenges that arise in this context.

he current Internet has been incredibly successful in

providing data communication connectivity between a

large number of end systems. This success is evident in

how much our society relies on the Internet to provide
the means for business, government, and personal communi-
cation. One of the main technical reasons the Internet has
become the network of choice lies in its network architecture.
The use of protocol layers to isolate complexity and ensure
interoperability is at the heart of the Internet’s design. The
thin waist of a single globally deployed network layer has
ensured that diversity in other layers still results in interoper-
ability.

However, this single fixed network layer has also become
the Internet’s most challenging limitation. The diversity of
end systems connected to the network continues to increase
(mobile devices, sensor nodes, etc.), and so do the types of
communication paradigms (e.g., content distribution, con-
tent-based networking). In addition, the need for security
goes beyond what was envisioned at the time of the Inter-
net’s design. These trends require an increasing level of
adaptability to novel network functions. However, the fixed
functionality of the existing network layer does not accom-
modate such adaptation and thus has limited the deployment
of innovative solutions.

Many current problems in networking cannot be solved
solely by changing functionality in end systems and leaving the
core of the network untouched. Specifically, security, perfor-
mance, and reliability require support within the network.
Therefore, it is imperative that next-generation network
designs consider how to integrate adaptability into the net-
work architecture. Such mechanisms for customization are
also essential from an economic perspective. Innovation is
driven by economic incentives. If network service providers
can differentiate their offerings from the competition by
adding useful features to their portion of the network, users
have the choice to reward such innovation.

In this article we present a network architecture that uses
processing services inside the network to provide such custom
networking functionality. These network services complement
novel applications and services that are developed on end sys-
tems at the edge of the network. The network service archi-
tecture we present addresses some of the key challenges
related to customizing network functionality:

* How can custom networking functionality be provided while
limiting the overall system complexity?

* How can the data plane and control plane interact to
achieve a scalable design for custom network services?

* How can routing be accomplished when communication and
computation costs need to be considered?

The remainder of the article is organized as follows. The
next section discusses design choices for network service,
some background, and the motivation for our architecture.
The details of our network service architecture are described
in the following section. An overview of research and deploy-
ment challenges is then presented. The final section summa-
rizes and concludes this article.

Customization Inside the Network

Innovation in networking is driven by the ability to customize
the functionality that is provided by the network. Clearly,
there are numerous ways of changing network functionality.
The key challenge is to determine a suitable architectural
framework such that customization can become an integral
part of the network infrastructure.

Customization in the Current Internet

In the current Internet, there are very limited options for cus-
tomization. Internet Protocol version 4 (IPv4), which is the
common protocol among all Internet devices, dictates the
structure of addresses, the way packets are processed and for-
warded, and so on. Therefore, few aspects of the network can
be changed without causing conflicts with the established
functionality of IPv4. Thus, the only practical options for cus-
tomization are:

Customization at higher or lower layers in the protocol
stack: The functionality of the network layer (layer 3) is fixed,
but there are choices at the transport layer (layer 4). Specifi-
cally, one can choose between two transport layer protocols
that provide different types of services:

e User Datagram Protocol (UDP) provides unreliable bare-
bones connectivity.

* Transmission Control Protocol (TCP) provides reliable con-
nectivity with congestion and flow control.

(There are a few more transport layer protocols, but they are

used less frequently and typically target a specific application

6 0890-8044/10/$25.00 © 2010 IEEE

IEEE Network ¢ July/August 2010

domain, e.g., streaming media.) Similarly, link layer protocols
can be adapted to specific domains (e.g., wireless or optical
links).

Customization with middleboxes: The Internet has been
augmented by several types of devices that have extended its
functionality beyond IPv4 forwarding. Examples include fire-
walls (which drop unauthorized connection attempts), net-
work address translation (NAT) boxes (which multiplex a
private address space into a single IP address), and intrusion
detection systems (which inspect payloads to identify and stop
hacking attempts). The functionality of these middleboxes
needs to be carefully crafted to operate transparently with
other IPv4 devices. These mechanisms for customization pro-
vide only limited choices. The selection between different
transport layer protocols is coarse, and the deployment of
middleboxes can only support functionality that can be inte-
grated with IPv4. In addition, deployment of specialized hard-
ware devices for each new customization function is very
expensive and does not scale.

Customization as Architectural Principle

To address the shortcomings of the current Internet architec-
ture, it is necessary to introduce customization as a fundamen-
tal principle in next-generation network architectures. There
needs to be an inherent mechanism to introduce new network-
ing functions into the networking infrastructure. Since it is not
possible (or desirable) to define all possible new networking
features a priori, customization relies on three specific features:

Programmability: Customization requires some level of
programmability in the network such that new networking
operations can be specified. The programming environment
can be completely general-purpose (e.g., any sequence of
instructions is permitted) or restricted to meet certain require-
ments (e.g., no loops to ensure program termination).

Dynamic deployment: Once new functionality is defined via
a custom packet processing program, it needs to be deployed
in the network. Dynamic deployment requires that new net-
work services can be instantiated without replacing major
hardware or software components in the networking infras-
tructure.

Selective instantiation: A key requirement for introducing
new functions in the network is that they can be selectively
employed on traffic. Clearly, not all traffic needs all types of
new functions. Thus, the network needs to support a mecha-
nism for choice on which functions are applied to which types
of traffic.

The combination of programmability and dynamic deploy-
ment provides a basis for introducing new functions, and
selective instantiation ensures that these functions are applied
to the correct traffic.

It is important to note that some of these features are used
implicitly in networks already. For example, many modern
router systems use programmable network processors to
implement packet forwarding functions. These systems are
general-purpose programmable. However, the programmabili-
ty is not exposed as a feature of the network architecture.
Instead, the manufacturer of the router uses programmability
to update the implementation of IPv4 (or introduce middle-
box functionality). For customization in the network architec-
ture, this level of programmability is insufficient.

Design Alternatives

Customization can manifest itself in a network architecture in
numerous ways. We briefly discuss several key design alterna-
tives that need to be considered. This discussion provides the
motivation for the design of the network service architecture
we present in the next section.

End System vs. Overlay vs. In-Network Services — Novel ser-
vices that customize the functionality of the network can be
placed in several locations in the network. This placement not
only affects which types of nodes (e.g., end system workstation
vs. in-network router) need to perform service processing, but
also impacts how these custom services are represented in the
network architecture.

Figure 1 shows three service placements that differ funda-
mentally in how they are implemented. The scenarios are
illustrated using a video distribution example. It is assumed
that a high-definition video source needs to stream video to
three different clients. The high-definition display on the right
can receive unmodified video. The two handheld clients at the
bottom require a lower resolution of the video since the wire-
less links connecting them to the network cannot support the
bandwidth necessary for high-definition video, and their pro-
cessing capacity (and battery power) is too limited to
transcode high-definition video to a lower resolution. There-
fore, it is necessary to accommodate two video transcoding
services that modify high-definition video into a lower-resolu-
tion encoding.

There are three fundamentally different ways of placing
these transcoding services:

Services on the end system: The simplest scenario of han-
dling services is to colllocate them with the distributed appli-
cation on the sending or receiving end system. In the case of
the video distribution example, the sender performs transcod-
ing for all necessary types of video and transmits each stream.
The benefit of this approach is that the network does not
need to support any new functionality. The drawback is that
services are limited to the end systems involved in the com-
munication.

Services in overlay: Overlay networks use tunnels between
end systems to create a virtual topology. Since end systems that
implement a service can be placed logically inside the virtual
network topology, it is possible to introduce new networking
functions without changing anything in the network infrastruc-
ture. In the video distribution scenario, an overlay node in the
lower left of the figure performs the service processing that
modifies the video streams. The benefit of this approach is that
services can be placed throughout the virtual network topology
of the overlay. The drawback is that service processing is still
limited to physical end systems, which requires network traffic
to detour (across possibly slow access links).

Services inside the network: If routers can be extended to
support service processing, it is possible to place services on
nodes inside the network. In the case of video distribution, the
transcoding service can be placed on the node where the (mul-
ticast) video distribution branches between the high-definition
stream and a lower-resolution stream. The benefit of this
approach is that it minimizes network resource usage since it
does not require transmissions of multiple streams or detours.
The drawback is that service placement on routers requires
changes in the fundamental network architecture. This exam-
ple illustrates how the placement of services inside the network
can lead to more efficient operation of the network. It is also
important to point out that some services can only successfully
operate in the network. For example, a service related to qual-
ity of service (QoS) needs to operate on nodes in the network
(e.g., to perform QoS link scheduling) and cannot be imple-
mented successfully on end system nodes. Therefore, the archi-
tecture presented in the next section is based on customization
services that are located inside the network.

Data Plane vs. Control Plane — The data plane of the net-
work handles the forwarding of actual traffic that is sent.
The control plane handles routing protocols, error mes-

IEEE Network ¢ July/August 2010

sages, and similar management functions. In a router sys-
tem, these two planes are reflected in the data path and the
control path. In the data path, packets are received at the
input port. The input port processor also implements packet
processing functions, including a lookup in the forwarding
information base to determine where to send a packet.

HDTV source
(1080p)

1080
to
H.261)
1080n
to
H.263
Video

trans-
coding

HDTV source
(1080p)

H

7080p

to
.263

I/
7080p
to
H.261

Video transcoding

HDTV source
(1080p)

Networkm

Low quality
display (H.263)

Low quality
display (H.261)

(a)

Network

T080p

H.263|

Low quality
Uy display (H.261)
Low quality
display (H.263)
(b)
Network
&C /.y,A
%5
Q Low quality
. display (H.261)
Low quality
display (H.263)

(c)

HDTV display
(1080p)

DTV display
(1080p)

HDTV display
(1080p)

Figure 1. Alternatives for service placement in networks for a video transcoding
example: a) services on an end system, b) services in an overlay; c) services
inside a network.

Then, the packet is forwarded through the switching fabric
and buffered on the output port for transmission on the
outgoing link. The control path of the router involves the
control processor. Routing, control, and error messages are
directed to the control processor for processing. Since the
data path is typically optimized for high throughput perfor-

mance, the control path is sometimes referred
to as the slow path.

When considering network customization
through in-network services, it is possible to
introduce new functionality in the data path as
well as in the control path (Fig. 2). An example
of a new data path function is a novel intrusion
detection process that examines packet payloads.
An example of a new control path function is a
novel routing protocol that can adapt quickly to
link failures.

To ensure that innovative functionality can be
deployed in networks, it is crucial that network
architecture makes data path customization pos-
sible. While some innovation can be achieved
with control path customization only, a fixed
data path implies considerable constraints (as
discussed above for the current Internet). With
customization in the data path, the control path
needs to implement supporting management
functions. These management functions may
include selective instantiation of the data path
service. The architecture presented in the next
section focuses on network customization
through novel data path functions. The control
path is used for routing and connection setup,
and to ensure that the correct set of services is
instantiated for each packet.

Generality vs. Manageability — The types of cus-
tomization that are supported by different net-
work architectures may differ in how general
they are. In some scenarios, customization may
permit the introduction of any new function. In
other scenarios, customization may be based on
selection from a given set of functions. The two
extremes in this spectrum are:

The current Internet with an ASIC-based
IPv4 router: Routers that use application-specif-
ic integrated circuits (ASICs) to implement
packet forwarding are limited to the functionali-
ty that is provided at design time. Such systems
cannot be extended to implement any new func-
tions unless the ASIC is physically replaced. A
network with such routers is completely static in
its functionality. The key benefit of such a net-
work design is its deterministic behavior, low
complexity, and easier manageability.

An active network with a general-purpose
programmable router: Active networks allow
end system applications to introduce arbitrary
code for packet processing with each packet
[1]. Routers in the network use general-pur-
pose processors to execute this code as the
packet traverses the network. Such an
approach provides the highest level of general-
ity for introducing new functionality. However,
it also causes a high level of complexity and
difficulty in managing the network. The intro-
duction of arbitrary code makes it difficult to
ensure isolation between connections. It also

IEEE Network ¢ July/August 2010

Router

Control
processor

Control path
customization

Control path

Data path

Input port

Output

customization

Switching
fabric

Output

Packet /‘;' B m
| —
Data path

INgqut port i / %

port

New functions can be introduced by adding new
network services to the pool of available choices.
As discussed in more detail below, it is not neces-
sary that all routers in the network support all net-
work services (as long as there is at least one
system that can perform a particular network ser-
vice).

The power of this approach of composing net-
work functionality from services is that it balances
customization with manageability. We envision
that there will be on the order of tens to a few
hundred network services and that new network
services are introduced at a slow pace (e.g.,
through Internet Engineering Task Force [IETF]
standardization). Thus, new services can be
deployed through conventional software update
mechanisms for routers. By avoiding end users
introducing new services on demand (as was pro-
posed for active networks), it is possible to reduce
the management complexity of the architecture.

=1

Figure 2. Customization options in the data path and control path of a router.

makes it difficult to reason about the behavior of the net-
work since each packet may exhibit different forwarding
behavior.

In our architecture presented in the next section, we try to
balance the need for new functionality with the need for
maintaining manageability. Instead of permitting each connec-
tion to introduce new functions, we only permit a custom
selection from existing in-network services (where new ser-
vices are introduced on coarse timescales). As illustrated in
Fig. 3, our design of in-network services aims to balance
between the generality of an active network design and the
manageability of the current Internet.

Network Service Architecture

We present a network architecture that uses network services
as basic functional blocks. By composing different combina-
tions of services, network functionality can be customized for
different types of traffic. In addition, the introduction of new
services permits continuous adaptation to new network uses.
We discuss the general ideas behind network services, how
they can be implemented in a network architecture, and how
they can be used.

Network Services

We use the term network service to represent any networking
function that is implemented on routers or end systems. In
our architecture we decompose the traditional protocol stack
into these network services and permit custom composition of
services. This process is illustrated in Fig. 4. In the conven-
tional Internet protocol stack, a number of functions are
implemented (or have been proposed for implementation) in
each layer. Network layer functions are implemented on
routers throughout the network and include multicast, QoS
scheduling, and others. The transport and application layer
functions are typically implemented on end systems and
include reliability, flow control, intrusion detection, and more.

Instead of restricting the placement of these functions
based on their layer, the network service architecture consid-
ers each function as an independent network service. These
network services are placed in a pool from which they can be
selected arbitrarily. As illustrated in Fig. 4, a connection
request can create a custom service composition (in the case
of the example, multicast followed by content transcoding).

The power of customization in this architecture
lies in the very large number of different combina-
tions of network services that can be created.

Network Service Architecture Design

To implement the concept of network services in an actual
network architecture, the data and control planes of the net-
work need to be redesigned. Figure 5 shows an outline of the
network service architecture for a network consisting of two
autonomous systems. In the control plane each autonomous
system uses (at least) one service controller. In the data plane
service nodes implement forwarding and processing associated
with network services. The functionalities of these two compo-
nents are:

Service controller: The service controller manages the
resources within the autonomous system and performs routing
of connection setup requests. Routing for connection setup
requests consists of finding a path from source to destination
as well as determining which nodes perform the set of services
requested along the way. Service controllers from neighboring
autonomous systems exchange control information for routing
and connection setup.

Service node: Service nodes perform forwarding and can

A
IPv4-based
Internet
2
3
©
()
= In-network
c services
©
>
Active
networks
Generality

Figure 3. Trade-off between generality and manage-
ability for different network architectures.

IEEE Network ¢ July/August 2010

implement a subset of the available network services. Service
nodes inform their local service controller which services
they can perform to allow the service controller to make
suitable routing decisions. Once a connection is set up, the
service controller informs the service node where to route
the associated traffic and what (if any) network services to
perform.

Using the functionality of service controllers and service
nodes, a connection request can be translated into a path

through the network that passes service nodes that implement

the requested network services (as shown in Fig. 5 for the

multicast and transcoding example).
We make several assumptions in this architecture. These
include:

* The sequence of services specified by a connection is fixed for
the duration of the connection. If a different service sequence
is necessary, a new connection needs to be established.

* The underlying infrastructure provides basic addressing, for-

warding, and so on (which is being explored in

Traditional protocol stack

the context of ongoing research on next-gener-
ation Internet). Progress in this domain can be
incorporated in the network service architec-

" N/ N
Caching

/
IDS

\

Trans-
coding

o /

Application
/

ture as it becomes available.
e Connections follow a fixed path during their
lifetime.
Fixed routes can be achieved by tunneling or
by using a network infrastructure that inherently

|/

- N
Reliability
. /

~

SSL

Transport privacy

allows control of per-flow routes (e.g., PoMo [2],
OpenFlow [3]). Rerouting in case of link failure
can be handled by a renewed connection setup
request.

More details can be found in [4] on the net-

4 N

Anycast

o /

QoS
scheduling

- /

Network

work service architecture and in [5] on a proto-
type implementation.

0 Interfaces
End-system applications that communicate via

—_—

R

~
a
Flow
control

Network
services

/

/
/

)

Anycast

Multi-
cast

/
/
/
/

|
Trans-
\ coding

QoS
scheduling

~

/7

Source

Custom service composition

Destination

the network service architecture use a UNIX

socket-style interface. In addition to the destina-

tion of the connection request, the sequence of
required services needs to be specified. The spec-
ification of required services is done using a ser-

vice pipeline. This service pipeline is a

concatenation of the sequence of requested net-

work services (and any parameters that need to
be passed to them). The service pipeline consists
of the following elements:

*Source/destination: Source and destination are
specified by their IP address and port number.

*Network service(s): Each network service is
specified by its standardized name. Parameters
are provided as necessary.

* Concatenation: The source, network service(s),
and destination are concatenated to form a
linear sequence.

Additionally, a service pipeline can support
optional service and branches (e.g., when using
multicast). An example of service specifications
for video multicast with transcoding is:

:>>multicast(192.168.1.1:5000,
video transcode(1080p,H.264)>>
192.168.2.17:5000)

The source is not specified (* : *), the multicast
service branches traffic to two destinations
(192.168.1.1:5000 and
192.168.2.17:5000), and the latter destination
requires a transcoding service (with formats provid-
ed as parameters).

The use of service pipelines in the interface to
the network service architecture provides a gen-
eral and extensible method for customization.

Figure 4. Decomposition of protocol stack functions into network services and

custom composition.

More details on the implementation of the inter-
face can be found in [6].

10

IEEE Network ¢ July/August 2010

Service
Control plane

Service
node

Connection request

Service
1

Source

Autonomous
systems -
\ (N

.--¥| controller <"""'\ """"

| BEnd | N/ N
system
. Service :/
Service node
node /
Data plane

- Service

7 controller

End-
system

Service

Service
node

P Destination

Figure 5. Network service architecture.

Network Services in Network Virtualization

Virtualization of the physical network infrastructure is one of

the key aspects of next-generation networks. In this context

the network service architecture can be integrated in two dif-
ferent ways:

* Network service architecture inside a virtual slice: As virtual-
ization permits multiple network architectures to coexist on
the same physical infrastructure, the network service archi-
tecture can be deployed as one such slice. Within this slice,
connections can specify custom services as described above.

* Network service architecture to specify functionality of virtu-
al slices: The abstractions for specifying and enabling cus-
tom functionality in the network can also be used for setting
up virtual slices. When a new virtual slice is instantiated, it
does not contain any specific functionality. The network ser-
vice architecture can be used to customize the functionality
of this slice. All connections within the slice would use the
same service specification provided at configuration time.

In the latter scenario the network service architecture is not
explicitly exposed within the slice. Instead, it acts as an
abstraction layer to simplify configuration of virtualized net-
works.

Research and Deployment Challenges

The network service architecture described in the previous
section requires solutions to a set of fundamental research
and deployment problems. In this section, we briefly highlight
several of these challenges and discuss how we have addressed
some of them.

Supporting Infrastructure

The network service architecture requires support by the net-
work infrastructure to function. As mentioned above, address-
ing, forwarding, and similar basic functions are assumed to be
available in the network. In addition, it is required that the
path of connections can be pinned down in the network (once
the route has been determined by network service con-

trollers). This functionality can be provided by tunnels or
other network architectures that perform per-flow routing
(e.g., PoMo [2], OpenFlow [3]).

On end systems, some level of support for custom network
services is necessary. Depending on what functionality is
pushed into the network, there may be a need for custom end
system protocol stacks. Ongoing research on customization of
protocol stacks can complement the network service architec-
ture (e.g., SILO [7]).

Connection Request Routing

One of the key challenges in the network service architecture
is to determine how to route connection requests. Convention-
al approaches of shortest path routing between source and
destination are not suitable since the shortest path may not
encounter service nodes that provide the requested services.
Even if these services are provided along the shortest path, it is
not possible to ensure that the path is optimal when factoring
in the cost of network service computation. A slightly longer
path may traverse a node that can perform the necessary net-
work service processing considerably faster. Therefore, it is
necessary to develop novel routing algorithms that can consid-
er both communication and computation costs. We have devel-
oped such algorithms for both centralized and distributed
implementations. In both cases a single metric is used to repre-
sent the cost of communication and processing (e.g., delay).
Alternative routing approaches have been proposed in [8].

The centralized algorithm for finding the optimal path
between source and destination while traversing nodes that
can provide specific services is based on an extended graph
representation of the network. The extended graph consists of
layers, where each layer is a copy of the entire network. The
first layer, which contains the source node, handles traffic
before any service is performed. The first layer is connected
to the second layer with edges on corresponding nodes where
the first requested network service can be performed. The
second layer then represents communication after the first
service is performed. This layering is continued until the last
layer (i.e., after the last network service processing is per-

IEEE Network ¢ July/August 2010

formed), where the destination node is placed. Then any
shortest path algorithm is used (e.g., Dijsktra’s algorithm) to
find a path from the source in the first layer to the destination
in the last layer. Since transitions between layers represent
service processing steps, the shortest path in the extended
graph determines where to place network services and how to
route between them. A detailed discussion of this approach
can be found in [9]. The algorithm provides an optimal solu-
tion, but requires a complete view of the entire network. Such
a global view is unrealistic for an Internet-scale network.
Therefore, we use this algorithm only within autonomous sys-
tems, where it is reasonable to assume that the service con-
troller is aware of all nodes and links.

A more scalable distributed algorithm for routing with net-
work services is based on an extension of distance vector rout-
ing. Instead of simply exchanging the cost of reaching a
destination using a distance vector, this algorithm exchanges a
service matrix. This service matrix contains information on the
cost of reaching a destination while performing a certain set
of services along the path. The matrix has as many columns as
there are service configurations. Since this number increases
combinatorially with the number of services, we have devel-
oped an approximation that only uses information about the
cost of performing a single service along the path. More
details on this routing algorithm can be found in [10]. The
aggregation of routing alternatives into a single matrix entry
using an extension of the Bellman-Ford equation ensures that
only a fixed amount of information needs to be exchanged
between neighboring nodes. Thus, this distributed algorithm
can scale to large deployments. We use this algorithm for
routing between autonomous systems (i.e., between service
controllers).

Network Service Composition

The network service architecture allows arbitrary composition
of network services. Clearly, there are combinations that are
not desirable since they do not lead to a useful communica-
tion setup (e.g., use of a reliability service on the transmitting
end system’s side without a matching service on the receiving
side). To assist applications in using the network service archi-
tecture, we have explored the use of tools to support network
service composition. These tools represent the semantics of
network traffic and the operations network services perform
on these semantics (e.g., transcoding requires an input stream
of a certain format and generates an output stream of a dif-
ferent format).
There are two ways of using this composition tool:

* Verification of a service pipeline: Given a service pipeline
provided by an application in a connection setup request,
the tool can verify that the sequence of requested services
provides a suitable communication setup.

* Automated composition: Given the semantics of traffic that
is sent by the source and given the required semantics of
traffic received by the destination, the tool can automatical-
ly compose a suitable sequence of network services.

The latter functionality, which is considerably more complex

than simple verification, is based on the use of logic reasoning

heuristics. More details can be found in [11].

Summary

The functionality of the Internet needs to adapt to emerging
trends in network use and demands for security, performance,
and reliability. Therefore, the deployment of custom function-
ality is an essential aspect of next-generation network archi-

tectures. We have presented a network service architecture
that allows the introduction of novel network services and a
custom instantiation of these services for each connection. We
have discussed the motivation for the design of this architec-
ture, and how the data plane and control plane interact. We
have also presented an overview of research questions in this
domain, including the problem of routing in the presence of
service processing requirements.

In addition to these issues, it is important to note that the
network service architecture is part of a broader networking
ecosystem. There are general questions about the design of
routers that can provide high-performance processing, the
economic incentives and economic models for such an archi-
tecture, the standardization and deployment process of the
proposed architecture, and so on. These issues are being
addressed by many researchers and practitioners in the broad
context of next-generation network research. We believe that
the network service architecture is an important contribution
in this effort toward a more flexible next-generation Internet.

Acknowledgments

This material is based on work supported by the National Sci-
ence Foundation under Grant no. CNS-0626690.

References

[1] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network Archi-

tecture,” ACM SIGCOMM Comp. Commun. Rev., vol. 26, no. 2, Apr. 1996,
. 5-18.

[2] }F()pL Calvert, J. Griffioen, and L. Poutievski, “Separating Routing and For-
warding: A Clean-Slate Network Layer Design,” Proc. 4th BROADNETS,
Raleigh, NC, Sept. 2007, pp. 261-70.

[3] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” ACM
SIGCOMM Comp. Commun. Rev., vol. 38, no. 2, Apr. 2008, pp. 69-74.

[4] T. Wolf, “Service-centric End-to-End Abstractions in Next-Generation Net-
works,” Proc. 15th IEEE ICCCN, Arlington, VA, Oct. 2006, pp. 79-86.

[5] S. Ganapathy and T. Wolf, “Design of a Network Service Architecture,”
Proc. 16th IEEE ICCCN, Honolulu, HI, Aug. 2007, pp. 754-59.

[6] S. Shanbhag and T. Wolf, “Implementation of Encf—fo-End Abstractions in a
Network Service Architecture,” Proc. 4th Conf. Emerging Net. Experiments
Tech., Madrid, Spain, Dec. 2008.

[7]1 R. Dutta et al., “The SILO Architecture for Services Integration, Control, and
Optimization for the Future Internet,” Proc. IEEE ICC, Glasgow, Scotland,
June 2007, pp. 1899-1904.

[8] L. Xiao and K. Nahrstedt, “Minimum User-Perceived Inferference Routing in
Service Composition,” Proc. 25th IEEE INFOCOM ‘06, Barcelona, Spain,
Apr. 2006.

[9] S. Y. Choi, J. S. Turner, and T. Wolf, “Configuring Sessions in Pro-
grammable Networks,” Proc. 20th IEEE INFOCOM, Anchorage, AK, Apr.
2001, pp. 60-66.

[10] X. Huang, S. Ganapathy, and T. Wolf, “A Scalable Distributed Routing Pro-
tocol for Networks with Data-Path Services,” Proc. 16th IEEE ICNP, Orlando,
FL, Oct. 2008, pp. 318-27.

[11] S. Shanbhag et al., “Automated Service Composition in Next-Generation
Networks,” 29th IEEE ICDCS, Montreal, Canada, June 2009, pp. 245-50.

Biography

TILMAN WOLF [SM] (wolf@ecs.umass.edu) is an associate professor in the Depart-
ment of Electrical and Computer Engineering at the University of Massachusetts
Amherst. He received a Diplom in informatics from the University of Stuttgart,
Germany, in 1998. He also received an M.S. in computer science in 1998, an
M.S. in computer engineering in 2000, and a D.Sc. in computer science in
2002, all from Washington University in St. Louis. He is engaged in research
and recching in the areas of computer networks, computer architecture, and
embedded systems. His research interests include network processors, their appli-
cation in next-generation Internet architectures, and embedded system security.
His research has attracted substantial funding from both industry and the federal
government, including an NSF CAREER award. He is a senior member of the
ACM. He has been active as program committee member and organizing com-
mittee member of several professional conferences, including IEEE INFOCOM
and ACM SIGCOMM. He has served as TPC co-chair and general co-chair for
ICCCN. He has been serving as treasurer for the ACM SIGCOMM Society since
2005. At the University of Massachusetts, he received the College of Engineering
Outstanding Junior Faculty Award and the College of Engineering Outstanding
Teacher Award.

12

IEEE Network ¢ July/August 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

